18 research outputs found

    The Hyper Suprime-Cam Software Pipeline

    Full text link
    In this paper, we describe the optical imaging data processing pipeline developed for the Subaru Telescope's Hyper Suprime-Cam (HSC) instrument. The HSC Pipeline builds on the prototype pipeline being developed by the Large Synoptic Survey Telescope's Data Management system, adding customizations for HSC, large-scale processing capabilities, and novel algorithms that have since been reincorporated into the LSST codebase. While designed primarily to reduce HSC Subaru Strategic Program (SSP) data, it is also the recommended pipeline for reducing general-observer HSC data. The HSC pipeline includes high level processing steps that generate coadded images and science-ready catalogs as well as low-level detrending and image characterizations.Comment: 39 pages, 21 figures, 2 tables. Submitted to Publications of the Astronomical Society of Japa

    Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data

    Full text link
    We measure cosmic weak lensing shear power spectra with the Subaru Hyper Suprime-Cam (HSC) survey first-year shear catalog covering 137deg2^2 of the sky. Thanks to the high effective galaxy number density of ∼\sim17 arcmin−2^{-2} even after conservative cuts such as magnitude cut of i<24.5i<24.5 and photometric redshift cut of 0.3≤z≤1.50.3\leq z \leq 1.5, we obtain a high significance measurement of the cosmic shear power spectra in 4 tomographic redshift bins, achieving a total signal-to-noise ratio of 16 in the multipole range 300≤ℓ≤1900300 \leq \ell \leq 1900. We carefully account for various uncertainties in our analysis including the intrinsic alignment of galaxies, scatters and biases in photometric redshifts, residual uncertainties in the shear measurement, and modeling of the matter power spectrum. The accuracy of our power spectrum measurement method as well as our analytic model of the covariance matrix are tested against realistic mock shear catalogs. For a flat Λ\Lambda cold dark matter (Λ\LambdaCDM) model, we find S8≡σ8(Ωm/0.3)α=0.800−0.028+0.029S_8\equiv \sigma_8(\Omega_{\rm m}/0.3)^\alpha=0.800^{+0.029}_{-0.028} for α=0.45\alpha=0.45 (S8=0.780−0.033+0.030S_8=0.780^{+0.030}_{-0.033} for α=0.5\alpha=0.5) from our HSC tomographic cosmic shear analysis alone. In comparison with Planck cosmic microwave background constraints, our results prefer slightly lower values of S8S_8, although metrics such as the Bayesian evidence ratio test do not show significant evidence for discordance between these results. We study the effect of possible additional systematic errors that are unaccounted in our fiducial cosmic shear analysis, and find that they can shift the best-fit values of S8S_8 by up to ∼0.6σ\sim 0.6\sigma in both directions. The full HSC survey data will contain several times more area, and will lead to significantly improved cosmological constraints.Comment: 43 pages, 21 figures, accepted for publication in PAS

    First Data Release of the Hyper Suprime-Cam Subaru Strategic Program

    Full text link
    The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope and it started in March 2014. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 years of observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and ~27.0 mag, respectively (5sigma for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF photometry (rms) both internally and externally (against Pan-STARRS1), and ~10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp/.Comment: 34 pages, 20 figures, 7 tables, moderate revision, accepted for publication in PAS

    The Hyper Suprime-Cam SSP survey: Overview and survey design

    Get PDF
    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2-m Subaru telescope on the summit of Mauna Kea in Hawaii. A team of scientists from Japan, Taiwan, and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2 in five broad bands (grizy), with a 5 σ point-source depth of r ≈ 26. The Deep layer covers a total of 26 deg2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey
    corecore